下表描述了重塑函数:
函数 | 描述 |
---|---|
reshape(source, shape, pad, order) | 它构造一个特定形状的形状,从一个给定source阵列中的元素开始的数组。如果垫不包含则soure的尺寸必须至少为产物(形状)。如果pad包括在内,它必须具有相同的类型的soure。如果order被包括,它必须使用相同的形状的形状的整数数组,值必须是一个排列(1,2,3,...,n),其中n是在形状要素的数量,它必须小于或等于7。 |
示例
下面的例子演示了这一概念:
program arrayReshape implicit none interface subroutine write_matrix(a) real, dimension(:,:) :: a end subroutine write_matrix end interface real, dimension (1:9) :: b = (/ 21, 22, 23, 24, 25, 26, 27, 28, 29 /) real, dimension (1:3, 1:3) :: c, d, e real, dimension (1:4, 1:4) :: f, g, h integer, dimension (1:2) :: order1 = (/ 1, 2 /) integer, dimension (1:2) :: order2 = (/ 2, 1 /) real, dimension (1:16) :: pad1 = (/ -1, -2, -3, -4, -5, -6, -7, -8, & & -9, -10, -11, -12, -13, -14, -15, -16 /) c = reshape( b, (/ 3, 3 /) ) call write_matrix(c) d = reshape( b, (/ 3, 3 /), order = order1) call write_matrix(d) e = reshape( b, (/ 3, 3 /), order = order2) call write_matrix(e) f = reshape( b, (/ 4, 4 /), pad = pad1) call write_matrix(f) g = reshape( b, (/ 4, 4 /), pad = pad1, order = order1) call write_matrix(g) h = reshape( b, (/ 4, 4 /), pad = pad1, order = order2) call write_matrix(h) end program arrayReshape subroutine write_matrix(a) real, dimension(:,:) :: a write(*,*) do i = lbound(a,1), ubound(a,1) write(*,*) (a(i,j), j = lbound(a,2), ubound(a,2)) end do end subroutine write_matrix
当上述代码被编译和执行时,它产生了以下结果:
21.0000000 24.0000000 27.0000000 22.0000000 25.0000000 28.0000000 23.0000000 26.0000000 29.0000000 21.0000000 24.0000000 27.0000000 22.0000000 25.0000000 28.0000000 23.0000000 26.0000000 29.0000000 21.0000000 22.0000000 23.0000000 24.0000000 25.0000000 26.0000000 27.0000000 28.0000000 29.0000000 21.0000000 25.0000000 29.0000000 -4.00000000 22.0000000 26.0000000 -1.00000000 -5.00000000 23.0000000 27.0000000 -2.00000000 -6.00000000 24.0000000 28.0000000 -3.00000000 -7.00000000 21.0000000 25.0000000 29.0000000 -4.00000000 22.0000000 26.0000000 -1.00000000 -5.00000000 23.0000000 27.0000000 -2.00000000 -6.00000000 24.0000000 28.0000000 -3.00000000 -7.00000000 21.0000000 22.0000000 23.0000000 24.0000000 25.0000000 26.0000000 27.0000000 28.0000000 29.0000000 -1.00000000 -2.00000000 -3.00000000 -4.00000000 -5.00000000 -6.00000000 -7.00000000